

Journal of Molecular Catalysis A: Chemical 176 (2001) 293-298

www.elsevier.com/locate/molcata

Subject index

Acetic acid

Liquid-phase oxidation of benzene to phenol by $CuO-Al_2O_3$ catalysts prepared by co-precipitation method (Miyahara, T. (176) 141)

Activity enhancement

Effect of hydrogenation under high pressure on the structure and catalytic properties of Cu–Zr amorphous alloys (Szummer, A. (176) 205)

Adsorption

Modelling of the adsorption of formic acid and formaldehyde over rutile $TiO_2(1\ 1\ 0)$ and $TiO_2(0\ 1\ 1)$ clusters (Kieu, L. (176) 117)

Adsorptive properties

Hexane total oxidation on LaMO₃ (M = Mn, Co, Fe) perovskitetype oxides (Spinicci, R. (176) 247)

Advanced oxidation technique

Photocatalytic oxidation of trichloroethylene in humidified atmosphere (Amama, P.B. (176) 165)

Aerobic oxidation

Cobalt phthalocyaninetetrasulphonamide catalyzed aerobic oxidation of α -hydroxyketones: an efficient and simple synthesis of α -diketones (Jain, S.L. (176) 101)

Alcohol dehydration

Studies on anion-promoted titania. 3. Effect of concentration and source of phosphate ion, method of preparation, and activation temperature on redox, acid–base, textural and catalytic properties of titania (Samantaray, S.K. (176) 151)

Aliphatic amines

Synthesis of dialkylureas by electrocatalytical carbonylation of aliphatic amines under mild conditions (Yang, H. (176) 73)

Alkoxide

Ethylene polymerization by $\operatorname{Tp}^{R}\operatorname{Ti}(\operatorname{OCH}_{3})_{3-n}\operatorname{Cl}_{n}$ complexes (Karam, A. (176) 65)

Aluminium

Comparative photosensitised transformation of polychlorophenols with different sulphonated metallophthalocyanine complexes in aqueous medium (Ozoemena, K. (176) 29)

Amino acids

Catalytic aerobic oxidation of 2-chloroethyl ethylsulfide, a mustard simulant, under ambient conditions. Effect of solvents, ligands, and transition metals on reactivity (Boring, E. (176) 49)

Amorphous alloys

Effect of hydrogenation under high pressure on the structure and catalytic properties of Cu–Zr amorphous alloys (Szummer, A. (176) 205)

Ascorbic acid

Liquid-phase oxidation of benzene to phenol by $CuO-Al_2O_3$ catalysts prepared by co-precipitation method (Miyahara, T. (176) 141)

Benzene oxidation

Liquid-phase oxidation of benzene to phenol by $CuO-Al_2O_3$ catalysts prepared by co-precipitation method (Miyahara, T. (176) 141)

Biphasic catalysis

Rhodium catalyzed hydroformylation of water insoluble olefins in the presence of chemically modified β -cyclodextrins: evidence for ligand-cyclodextrin interactions and effect of various parameters on the activity and the aldehydes selectivity (Mathivet, T. (176) 105)

Cadmium chromate and chromite

The synergism of cadmium on the catalytic activity of Cd–Cr–O system. I. Preparation, characterization and electrical properties (El-Awad, A.M. (176) 213)

Cadmium chromate

The synergism of cadmium on the catalytic activity of Cd–Cr–O system. II. Ethanol decomposition, catalysts reducibility, and in situ electrical conductivity measurements (Abu-Zied, B.M. (176) 227)

Cadmium chromite

The synergism of cadmium on the catalytic activity of Cd–Cr–O system. II. Ethanol decomposition, catalysts reducibility, and in situ electrical conductivity measurements (Abu-Zied, B.M. (176) 227)

Carbon monoxide

Effect of a hydride source (water, hydrogen, p-toluenesulfonic acid) on the hydroesterification of ethylene to methyl propionate using a Pd(PPh₃)₂(TsO)₂ (TsO = p-toluenesulfonate anion) catalyst precursor (Vavasori, A. (176) 11)

Carbon monoxide

Synthesis of dialkylureas by electrocatalytical carbonylation of aliphatic amines under mild conditions (Yang, H. (176) 73)

Carbonylation

Synthesis of dialkylureas by electrocatalytical carbonylation of aliphatic amines under mild conditions (Yang, H. (176) 73)

Catalyst reduction

The synergism of cadmium on the catalytic activity of Cd-Cr-O system. II. Ethanol decomposition, catalysts reducibility, and in

situ electrical conductivity measurements (Abu-Zied, B.M. (176) 227)

Catalyst

A facile catalytic oxidation of activated hydrocarbons to the carbonyl functionality mediated by Mn(II) complexes (Pan, J.-F. (176) 19)

Catalyst

Effect of a hydride source (water, hydrogen, p-toluenesulfonic acid) on the hydroesterification of ethylene to methyl propionate using a Pd(PPh₃)₂(TsO)₂ (TsO = p-toluenesulfonate anion) catalyst precursor (Vavasori, A. (176) 11)

Catalytic oxidation under ambient conditions

Catalytic aerobic oxidation of 2-chloroethyl ethylsulfide, a mustard simulant, under ambient conditions. Effect of solvents, ligands, and transition metals on reactivity (Boring, E. (176) 49)

Chiral ligand

A facile catalytic oxidation of activated hydrocarbons to the carbonyl functionality mediated by Mn(II) complexes (Pan, J.-F. (176) 19)

2-Chloroethyl ethyl sulfide

Catalytic aerobic oxidation of 2-chloroethyl ethylsulfide, a mustard simulant, under ambient conditions. Effect of solvents, ligands, and transition metals on reactivity (Boring, E. (176) 49)

Chromium oxide

The synergism of cadmium on the catalytic activity of Cd–Cr–O system. I. Preparation, characterization and electrical properties (El-Awad, A.M. (176) 213)

Chromium(III) oxide

The synergism of cadmium on the catalytic activity of Cd–Cr–O system. II. Ethanol decomposition, catalysts reducibility, and in situ electrical conductivity measurements (Abu–Zied, B.M. (176) 227)

CO hydrogenation

A novel catalyst for DME synthesis from CO hydrogenation.

1. Activity, structure and surface properties (Qi, G.-X. (176) 195)

Cobalt phthalocyaninetetrasulphonamide

Cobalt phthalocyaninetetrasulphonamide catalyzed aerobic oxidation of α -hydroxyketones: an efficient and simple synthesis of α -diketones (Jain, S.L. (176) 101)

Cu-Mn catalyst

A novel catalyst for DME synthesis from CO hydrogenation. 1. Activity, structure and surface properties (Qi, G.-X. (176) 195)

Cumene conversion

Studies on anion-promoted titania. 3. Effect of concentration and source of phosphate ion, method of preparation, and activation temperature on redox, acid–base, textural and catalytic properties of titania (Samantaray, S.K. (176) 151)

$CuO-Al_2O_3$

Liquid-phase oxidation of benzene to phenol by $\text{CuO-Al}_2\text{O}_3$ catalysts prepared by co-precipitation method (Miyahara, T. (176) 141)

Cyclodextrins

Rhodium catalyzed hydroformylation of water insoluble olefins in the presence of chemically modified β -cyclodextrins: evidence for ligand-cyclodextrin interactions and effect of various

parameters on the activity and the aldehydes selectivity (Mathivet, T. (176) 105)

Dehydrogenation

Effect of hydrogenation under high pressure on the structure and catalytic properties of Cu–Zr amorphous alloys (Szummer, A. (176) 205)

DFT study

Phenol oxidation over titanosilicalite-1: experimental and DFT study of solvent (Atoguchi, T. (176) 173)

Dialkylurea

Synthesis of dialkylureas by electrocatalytical carbonylation of aliphatic amines under mild conditions (Yang, H. (176) 73)

α-Diketone

The effects of tin on the hydrogenation of α -diketones over platinum nanoclusters (Zhang, J. (176) 281)

α-Diketones

Cobalt phthalocyaninetetrasulphonamide catalyzed aerobic oxidation of α -hydroxyketones: an efficient and simple synthesis of α -diketones (Jain, S.L. (176) 101)

DME synthesis

A novel catalyst for DME synthesis from CO hydrogenation. 1. Activity, structure and surface properties (Qi, G.-X. (176) 195)

Electrical conductivity

The synergism of cadmium on the catalytic activity of Cd–Cr–O system. I. Preparation, characterization and electrical properties (El-Awad, A.M. (176) 213)

Electrocatalysis

Synthesis of dialkylureas by electrocatalytical carbonylation of aliphatic amines under mild conditions (Yang, H. (176) 73)

Enone

A facile catalytic oxidation of activated hydrocarbons to the carbonyl functionality mediated by Mn(II) complexes (Pan, J.-F. (176) 19)

Epoxidation

Epoxidation of cyclic alkenes with hydrogen peroxide and *tert*-butyl hydroperoxide on Na-containing Tiβ zeolites (Xia, Q.-H. (176) 179)

Ethanol decomposition

The synergism of cadmium on the catalytic activity of Cd–Cr–O system. II. Ethanol decomposition, catalysts reducibility, and in situ electrical conductivity measurements (Abu-Zied, B.M. (176) 227)

Ethylene

Effect of a hydride source (water, hydrogen, p-toluenesulfonic acid) on the hydroesterification of ethylene to methyl propionate using a Pd(PPh₃)₂(TsO)₂ (TsO = p-toluenesulfonate anion) catalyst precursor (Vavasori, A. (176) 11)

Ethylene

Ethylene polymerization by $\operatorname{Tp}^{R}\operatorname{Ti}(\operatorname{OCH}_{3})_{3-n}\operatorname{Cl}_{n}$ complexes (Karam, A. (176) 65)

Formaldehyde

Modelling of the adsorption of formic acid and formaldehyde over rutile $TiO_2(1\ 1\ 0)$ and $TiO_2(0\ 1\ 1)$ clusters (Kieu, L. (176) 117)

Formic acid

Modelling of the adsorption of formic acid and formaldehyde over rutile $TiO_2(1\ 1\ 0)$ and $TiO_2(0\ 1\ 1)$ clusters (Kieu, L. (176) 117)

Gold complexes

Catalytic aerobic oxidation of 2-chloroethyl ethylsulfide, a mustard simulant, under ambient conditions. Effect of solvents, ligands, and transition metals on reactivity (Boring, E. (176) 49)

H_2O_2

Liquid-phase oxidation of benzene to phenol by $CuO-Al_2O_3$ catalysts prepared by co-precipitation method (Miyahara, T. (176) 141)

HD simulant

Catalytic aerobic oxidation of 2-chloroethyl ethylsulfide, a mustard simulant, under ambient conditions. Effect of solvents, ligands, and transition metals on reactivity (Boring, E. (176) 49)

Hex-1-ene

Influence of X ligand nature in the activation process of racE- $t(Ind)_2ZrX_2$ by methylaluminoxane (Pédeutour, J.-N. (176) 87)

Hexane oxidation

Hexane total oxidation on LaMO₃ (M = Mn, Co, Fe) perovskitetype oxides (Spinicci, R. (176) 247)

Homogeneous

Comparative evaluation of the activity of some homogeneous and polymeric catalysts for the epoxidation of alkenes by organic hydroperoxides (Kotov, S.V. (176) 41)

Humidity

Photocatalytic oxidation of trichloroethylene in humidified atmosphere (Amama, P.B. (176) 165)

Hydrocarbon

A facile catalytic oxidation of activated hydrocarbons to the carbonyl functionality mediated by Mn(II) complexes (Pan, J.-F. (176) 19)

Hybrid catalyst

Synthesis, characterization and catalytic activity of the water-soluble tungsten complex [W(CO)₃(MeCN)(TPPMS)₂], TPPMS = $(C_6H_5)_2P(m\text{-}C_6H_4SO_3Na)\cdot 2H_2O$: the unprecedented transformation of the complex into a hybrid (homogeneous/heterogeneous) catalyst precursor during two-phase catalytic hydrogenation upon changes in reaction conditions (Baricelli, P. (176) 1)

Hydroesterification

Effect of a hydride source (water, hydrogen, p-toluenesulfonic acid) on the hydroesterification of ethylene to methyl propionate using a Pd(PPh₃)₂(TsO)₂ (TsO = p-toluenesulfonate anion) catalyst precursor (Vavasori, A. (176) 11)

Hydroformylations

Rhodium catalyzed hydroformylation of water insoluble olefins in the presence of chemically modified β -cyclodextrins: evidence for ligand-cyclodextrin interactions and effect of various parameters on the activity and the aldehydes selectivity (Mathivet, T. (176) 105)

Hydrogenation

Synthesis, characterization and catalytic activity of the watersoluble tungsten complex [W(CO)₃(MeCN)(TPPMS)₂], TPPMS = $(C_6H_5)_2P(m-C_6H_4SO_3Na)\cdot 2H_2O$: the unprecedented transformation of the complex into a hybrid (homogeneous/heterogeneous) catalyst precursor during two-phase catalytic hydrogenation upon changes in reaction conditions (Baricelli, P. (176) 1)

Hydrogenation

The effects of tin on the hydrogenation of α -diketones over platinum nanoclusters (Zhang, J. (176) 19)

Hydrogen peroxide

Epoxidation of cyclic alkenes with hydrogen peroxide and *tert*-butyl hydroperoxide on Na-containing Tiβ zeolites (Xia, Q.-H. (176) 179)

Hydrogen peroxide

Oxidation of toluene and nitrobenzene with 30% aqueous hydrogen peroxide catalyzed by vanadium(V)-substituted polyoxometalates (Nomiya, K. (176) 79)

Hydrogen peroxide

Phenol oxidation over titanosilicalite-1: experimental and DFT study of solvent (Atoguchi, T. (176) 173)

Hydrogen peroxide

Quinone-mediated synthesis of hydrogen peroxide from carbon monoxide, water and oxygen (Querci, C. (176) 95)

Hydrogen treatment

Effect of hydrogenation under high pressure on the structure and catalytic properties of Cu–Zr amorphous alloys (Szummer, A. (176) 205)

Hydroperoxide

Comparative evaluation of the activity of some homogeneous and polymeric catalysts for the epoxidation of alkenes by organic hydroperoxides (Kotov, S.V. (176) 41)

Hydrotris(pyrazolyl)borate

Ethylene polymerization by $\operatorname{Tp}^{R}\operatorname{Ti}(\operatorname{OCH}_{3})_{3-n}\operatorname{Cl}_{n}$ complexes (Karam, A. (176) 65)

α-Hydroxyketones

Cobalt phthalocyaninetetrasulphonamide catalyzed aerobic oxidation of α -hydroxyketones: an efficient and simple synthesis of α -diketones (Jain, S.L. (176) 101)

La-Al perovskite oxides

Oxidative coupling of methane on LaAlO₃ perovskites partially substituted with alkali or alkali-earth ions (Spinicci, R. (176) 253)

$LaMO_3$ (M = Mn, Co, Fe) perovskites

Hexane total oxidation on LaMO₃ (M = Mn, Co, Fe) perovskitetype oxides (Spinicci, R. (176) 247)

Liquid-phase oxidation of cyclic alkenes

Epoxidation of cyclic alkenes with hydrogen peroxide and *tert*-butyl hydroperoxide on Na-containing Tiβ zeolites (Xia, Q.-H. (176) 179)

Lithium peroxide

The role and stability of Li_2O_2 phase in supported LiCl catalyst in oxidative dehydrogenation of *n*-butane (Landau, M.V. (176) 127)

Methane coupling

Oxidative coupling of methane on LaAlO₃ perovskites partially substituted with alkali or alkali-earth ions (Spinicci, R. (176) 253)

Methylaluminoxane

Influence of X ligand nature in the activation process of $racEt(Ind)_2ZrX_2$ by methylaluminoxane (Pédeutour, J.-N. (176) 87)

MgO-supported catalyst

The role and stability of Li_2O_2 phase in supported LiCl catalyst in oxidative dehydrogenation of *n*-butane (Landau, M.V. (176) 127)

Modification

The effects of tin on the hydrogenation of α -diketones over platinum nanoclusters (Zhang, J. (176) 281)

Molecular oxygen

Cobalt phthalocyaninetetrasulphonamide catalyzed aerobic oxidation of α -hydroxyketones: an efficient and simple synthesis of α -diketones (Jain, S.L. (176) 101)

Molybdenum

Comparative evaluation of the activity of some homogeneous and polymeric catalysts for the epoxidation of alkenes by organic hydroperoxides (Kotov, S.V. (176) 41)

Monoterpenes

Palladium-catalyzed oxidation of monoterpenes: novel tandem oxidative coupling-oxidation of camphene by dioxygen (da Silva, M.J. (176) 23)

n-Butane

The role and stability of Li_2O_2 phase in supported LiCl catalyst in oxidative dehydrogenation of *n*-butane (Landau, M.V. (176) 127)

N-ligands

Quinone-mediated synthesis of hydrogen peroxide from carbon monoxide, water and oxygen (Querci, C. (176) 95)

N_2O

Surface-mediated reductive carbonylation of SiO_2 -supported $RuCl_3$ and $Ru(NO)(NO_3)_3$ studied by IR spectroscopy (Huang, L. (176) 267)

Na-Tiß

Epoxidation of cyclic alkenes with hydrogen peroxide and *tert*-butyl hydroperoxide on Na-containing Tiβ zeolites (Xia, Q.-H. (176) 179)

Nitrobenzene

Oxidation of toluene and nitrobenzene with 30% aqueous hydrogen peroxide catalyzed by vanadium(V)-substituted polyoxometalates (Nomiya, K. (176) 79)

Oxidation

A facile catalytic oxidation of activated hydrocarbons to the carbonyl functionality mediated by Mn(II) complexes (Pan, J.-F. (176) 19)

Oxidation

Oxidation of toluene and nitrobenzene with 30% aqueous hydrogen peroxide catalyzed by vanadium(V)-substituted polyoxometalates (Nomiya, K. (176) 79)

Oxidation

Palladium-catalyzed oxidation of monoterpenes: novel tandem oxidative coupling-oxidation of camphene by dioxygen (da Silva, M.J. (176) 23)

Oxidative coupling

Palladium-catalyzed oxidation of monoterpenes: novel tandem oxidative coupling-oxidation of camphene by dioxygen (da Silva, M.J. (176) 23)

Oxidative dehydrogenation

The role and stability of Li_2O_2 phase in supported LiCl catalyst in oxidative dehydrogenation of *n*-butane (Landau, M.V. (176) 127)

Oxygen reactivity

Oxidative coupling of methane on LaAlO₃ perovskites partially substituted with alkali or alkali-earth ions (Spinicci, R. (176) 253)

Palladium

Effect of a hydride source (water, hydrogen, p-toluenesulfonic acid) on the hydroesterification of ethylene to methyl propionate using a Pd(PPh₃)₂(TsO)₂ (TsO = p-toluenesulfonate anion) catalyst precursor (Vavasori, A. (176) 11)

Palladium

Palladium-catalyzed oxidation of monoterpenes: novel tandem oxidative coupling-oxidation of camphene by dioxygen (da Silva, M.J. (176) 23)

Palladium

Quinone-mediated synthesis of hydrogen peroxide from carbon monoxide, water and oxygen (Querci, C. (176) 95)

Pentachlorophenol

Comparative photosensitised transformation of polychlorophenols with different sulphonated metallophthalocyanine complexes in aqueous medium (Ozoemena, K. (176) 29)

Phase-transfer catalysis

Rhodium catalyzed hydroformylation of water insoluble olefins in the presence of chemically modified β -cyclodextrins: evidence for ligand-cyclodextrin interactions and effect of various parameters on the activity and the aldehydes selectivity (Mathivet, T. (176) 105)

Phenol oxidation

Phenol oxidation over titanosilicalite-1: experimental and DFT study of solvent (Atoguchi, T. (176) 173)

Phenol

Liquid-phase oxidation of benzene to phenol by $CuO-Al_2O_3$ catalysts prepared by co-precipitation method (Miyahara, T. (176) 141)

Phosphated titania

Studies on anion-promoted titania. 3. Effect of concentration and source of phosphate ion, method of preparation, and activation temperature on redox, acid—base, textural and catalytic properties of titania (Samantaray, S.K. (176) 151)

Photocatalysis

Photocatalytic oxidation of trichloroethylene in humidified atmosphere (Amama, P.B. (176) 165)

Photosensitization

Comparative photosensitised transformation of polychlorophenols with different sulphonated metallophthalocyanine complexes in aqueous medium (Ozoemena, K. (176) 29)

Platinum cluster

The effects of tin on the hydrogenation of α -diketones over platinum nanoclusters (Zhang, J. (176) 281)

Polymerization kinetics

Influence of X ligand nature in the activation process of $rac\text{Et}(\text{Ind})_2\text{ZrX}_2$ by methylaluminoxane (Pédeutour, J.-N. (176) 87)

Polymerization

Ethylene polymerization by $Tp^{R}Ti(OCH_{3})_{3-n}Cl_{n}$ complexes (Karam, A. (176) 65)

2-Propanol

Effect of hydrogenation under high pressure on the structure and catalytic properties of Cu–Zr amorphous alloys (Szummer, A. (176) 205)

Quinones

Quinone-mediated synthesis of hydrogen peroxide from carbon monoxide, water and oxygen (Querci, C. (176) 95)

Raman scattering spectroscopy

The role and stability of Li_2O_2 phase in supported LiCl catalyst in oxidative dehydrogenation of *n*-butane (Landau, M.V. (176) 127)

Reduction of NO

Surface-mediated reductive carbonylation of SiO₂-supported RuCl₃ and Ru(NO)(NO₃)₃ studied by IR spectroscopy (Huang, L. (176) 267)

Reductive carbonylation

Surface-mediated reductive carbonylation of SiO₂-supported RuCl₃ and Ru(NO)(NO₃)₃ studied by IR spectroscopy (Huang, L. (176) 267)

Rhodium

Rhodium catalyzed hydroformylation of water insoluble olefins in the presence of chemically modified β -cyclodextrins: evidence for ligand-cyclodextrin interactions and effect of various parameters on the activity and the aldehydes selectivity (Mathivet, T. (176) 105)

Ru(NO)(NO₃)₃

Surface-mediated reductive carbonylation of SiO₂-supported RuCl₃ and Ru(NO)(NO₃)₃ studied by IR spectroscopy (Huang, L. (176) 267)

RuCl₃

Surface-mediated reductive carbonylation of SiO₂-supported RuCl₃ and Ru(NO)(NO₃)₃ studied by IR spectroscopy (Huang, L. (176) 267)

Silicon phthalocyanine

Comparative photosensitised transformation of polychlorophenols with different sulphonated metallophthalocyanine complexes in aqueous medium (Ozoemena, K. (176) 29)

Singlet oxygen

Comparative photosensitised transformation of polychlorophenols with different sulphonated metallophthalocyanine complexes in aqueous medium (Ozoemena, K. (176) 29)

SiO₂

Surface-mediated reductive carbonylation of SiO₂-supported RuCl₃ and Ru(NO)(NO₃)₃ studied by IR spectroscopy (Huang, L. (176) 267)

SiO₂

The role and stability of Li₂O₂ phase in supported LiCl catalyst

in oxidative dehydrogenation of *n*-butane (Landau, M.V. (176) 127)

Spinels

The synergism of cadmium on the catalytic activity of Cd–Cr–O system. I. Preparation, characterization and electrical properties (El-Awad, A.M. (176) 213)

Spinels

The synergism of cadmium on the catalytic activity of Cd–Cr–O system. II. Ethanol decomposition, catalysts reducibility, and in situ electrical conductivity measurements (Abu–Zied, B.M. (176) 227)

Substituted perovskites

Oxidative coupling of methane on LaAlO₃ perovskites partially substituted with alkali or alkali-earth ions (Spinicci, R. (176) 253)

Sulfoxide

Catalytic aerobic oxidation of 2-chloroethyl ethylsulfide, a mustard simulant, under ambient conditions. Effect of solvents, ligands, and transition metals on reactivity (Boring, E. (176) 49)

Supported Cu catalysts

Liquid-phase oxidation of benzene to phenol by $\text{CuO-Al}_2\text{O}_3$ catalysts prepared by co-precipitation method (Miyahara, T. (176) 141)

Synergism

The synergism of cadmium on the catalytic activity of Cd–Cr–O system. II. Ethanol decomposition, catalysts reducibility, and in situ electrical conductivity measurements (Abu-Zied, B.M. (176) 227)

TBHP

Epoxidation of cyclic alkenes with hydrogen peroxide and *tert*-butyl hydroperoxide on Na-containing Tiβ zeolites (Xia, Q.-H. (176) 179)

Thioether

Catalytic aerobic oxidation of 2-chloroethyl ethylsulfide, a mustard simulant, under ambient conditions. Effect of solvents, ligands, and transition metals on reactivity (Boring, E. (176) 49)

Tin

Comparative photosensitised transformation of polychlorophenols with different sulphonated metallophthalocyanine complexes in aqueous medium (Ozoemena, K. (176) 29)

Tin

The effects of tin on the hydrogenation of $\alpha\text{-}diketones$ over platinum nanoclusters (Zhang, J. (176) 281)

TiO_2

Photocatalytic oxidation of trichloroethylene in humidified atmosphere (Amama, P.B. (176) 165)

Titanium zeolites

Epoxidation of cyclic alkenes with hydrogen peroxide and *tert*-butyl hydroperoxide on Na-containing Tiβ zeolites (Xia, Q.-H. (176) 179)

Titanium

Ethylene polymerization by $Tp^{R}Ti(OCH_{3})_{3-n}Cl_{n}$ complexes (Karam, A. (176) 65)

Titanosilicalite-1

Phenol oxidation over titanosilicalite-1: experimental and DFT study of solvent (Atoguchi, T. (176) 173)

Toluene

Oxidation of toluene and nitrobenzene with 30% aqueous hydrogen peroxide catalyzed by vanadium(V)-substituted polyoxometalates (Nomiya, K. (176) 79)

Topical skin protectants

Catalytic aerobic oxidation of 2-chloroethyl ethylsulfide, a mustard simulant, under ambient conditions. Effect of solvents, ligands, and transition metals on reactivity (Boring, E. (176) 49) Trichloroethylene

Photocatalytic oxidation of trichloroethylene in humidified atmosphere (Amama, P.B. (176) 165)

Trichlorophenol

Comparative photosensitised transformation of polychlorophenols with different sulphonated metallophthalocyanine complexes in aqueous medium (Ozoemena, K. (176) 29)

Trimethylaluminum

Influence of X ligand nature in the activation process of $rac\text{Et}(\text{Ind})_2\text{ZrX}_2$ by methylaluminoxane (Pédeutour, J.-N. (176) 87)

Tungsten

Synthesis, characterization and catalytic activity of the water-soluble tungsten complex [W(CO)₃(MeCN)(TPPMS)₂], TPPMS = $(C_6H_5)_2P(m-C_6H_4SO_3Na)\cdot 2H_2O$: the unprecedented transformation of the complex into a hybrid (homogeneous/heterogeneous) catalyst precursor during two-phase catalytic hydrogenation upon changes in reaction conditions (Baricelli, P. (176) 1)

UV-VIS spectroscopy

Influence of X ligand nature in the activation process of racE- $t(Ind)_2ZrX_2$ by methylaluminoxane (Pédeutour, J.-N. (176) 87)

Vanadium(V)-substituted polyoxometalates

Oxidation of toluene and nitrobenzene with 30% aqueous hydrogen peroxide catalyzed by vanadium(V)-substituted polyoxometalates (Nomiya, K. (176) 79)

Water-soluble

Synthesis, characterization and catalytic activity of the water-soluble tungsten complex [W(CO)₃(MeCN)(TPPMS)₂], TPPMS = $(C_6H_5)_2P(m-C_6H_4SO_3Na)\cdot 2H_2O$: the unprecedented transformation of the complex into a hybrid (homogeneous/heterogeneous) catalyst precursor during two-phase catalytic hydrogenation upon changes in reaction conditions (Baricelli, P. (176) 1)

XPS

The role and stability of ${\rm Li_2O_2}$ phase in supported LiCl catalyst in oxidative dehydrogenation of n-butane (Landau, M.V.

XRΓ

The role and stability of Li_2O_2 phase in supported LiCl catalyst in oxidative dehydrogenation of *n*-butane (Landau, M.V. (176) 127)

Zinc

Comparative photosensitised transformation of polychlorophenols with different sulphonated metallophthalocyanine complexes in aqueous medium (Ozoemena, K. (176) 29)

Zirconocenes

Influence of X ligand nature in the activation process of $rac\text{Et}(\text{Ind})_2\text{ZrX}_2$ by methylaluminoxane (Pédeutour, J.-N. (176) 87)